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The above considered negative decompensation of pressure perturbations in the first 
instance along the contour of the body is eliminated by the induction of a contour 
discontinuity [3, 8, S]. This result was obtained in investigations of the properties of 
the first variation of the minimizing functional. The problem of negative decompen- 
sation elimination in the second order can be solved by analyzing the necessary condi- 
tions of the Legendre kind. 

The author thanks K, A. Lur’e for his assistance and constant interest and also A. N. 
Kraiko snd A. V. Shipilin for their valuable advice, 
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The structure of solutions of gasdynamic equations is investigated in the caseof 
unsteady double waves in the neighborhood of the q&scent region. A general 
concept of double waves is presented in the form of special series with logarith- 
mic terms. Results of numerical computations are given. 
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The problem of determining the flow of plane and three-dimensional waves 
separated from the quiescent region by a weak ~~~i~ was considered in 
[l--S], where approximate solutions were derived for that neighborhood,and the 
formulation of boundary value problems required for solving the equation for the 
analog of the velocity potential in the hodograph plane was investigated. 

The more general problem (without the assumption of the degeneration of mo- 
tion) of arbitrary potential flows of polytropic gas adjacent to the quiescent re- 
gion and separated by a weak discontinuity was considerd in [4-Q& Solution 
of that problem was obtained in the form of special series in powers of the mo- 
dulus of the velocity vector r in the space of the time hodograph. The value 
r = 0 corresponds to the surface of weak discontinuity that separates the per- 
turbed motion region from that at rest. Some applioations of derived solutions 
to problems such as the motion of a convex piston and the propagation of weak 
shock waves were also investigated in those papers. Convergence in the small 
of obtained series was proved in [Q]. However the attempts of constructing series 
in powers of r, which were used in [4-83 for the presentation of equations of 
double waves in the neighborhood of the quiescent region, proved to be unsuc- 
cessful. 

Although parts of expansions in series in powers of r (accurate to within 
0 (9)), were constructed in [l-33, it was found that the coefficient at r” in 
equations for double waves cannot be determined owing to the insolvability of 
its equation. This is related to the fact that the surface r = 0 in the case of equa- 
tions for double waves is simultaneously a line of parabolic degeneration and a 
characteristic. 

The object of the present note is the formulation of solutions of equations for 
plane unsteady double waves in the neighborhood of the quiescent region. Parts 
of the derived series, which generally are nonanalytic functions of r, canbeused 
for defining flows at small r in particular those downstream of two-dimensional 
normal detonation waves [lo] or in problems of angular pistons [U], The method 
used for the derivation of series can be also applied in ~ve~gatio~ of three- 

dimensional self-similar flows with variables zl/zs and z&s (steady flows) or 
q/t, rslt and x$t (unsteady flows). However it was not Possible to obtain in such 
cases regular series in powers of r . 

1. In polar coordinates r, 9, (ul = r co9 cp, u2 = r sin cp) the system of equa- 
tions defining unstable double waves in a ~~~0~~ gas is of the form 

(1.1) 

where C (r, Cp) is the speed of sound, y is the adiabatic exponent, 0 (r, cp) is the 
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analog of the velocity potential in the hodograph plane, u, and u, are components of 
the velocity vector.aud subscripts r and fp denote diffe~n~tion with respect to r and 
Cp , respectively. Restitution of the flow in physical coordinates xl, x2, t is carried out 
by formulas 

(a similar formula is obtained for ;c, by the ~bs~~~on in (1.3) of cp - n/2 for ip). 
By setting the speed of sound c = 1 in the quiescent gas, we obtain for Eq. (1. I) at 

r = 0 the following Cauchy conditions [2]: 

e(o, cp) = $9 %(O,q,)=O, I%.(O,cp)l=l (1.4) 

The scheme of further exposition is as follows. First, we consider the case of the sym- 
metric hodograph 0 = 8 (r). We determine function 8 = 8 (r) in the ~ig~orh~ 
of point r = 0 by eliminating successive terms of the expansion of 0 (r). Elimination 
of these terms is effected by successive linearization of related equations and estimating 
the order of eliminated terms. 

Later, in Sect. 2 in the analysis of the case of asymmetric hodograph we apply the me- 
thod of undetermined coefficients,taking as the basis the form of solution for the sym- 
metric hodograph, 

Thus for 8 = 9 (r) we have the Cauchy problem 

T-1 -z_0 %v + [ 
or (1 - ($9 

r I ++ &.a, + 2 = 0 

fV)=& I % (0) I = 1 

(1.5) 

(1.6) 

Without loss of generality, we consider the case of 0, (0) = 1. First, we investigate 
the hind of the singular point of Eq. (1.5) with initial conditions (1.6). Since (1.5) isa 
generalized homogeneous equation, hence after the substitution r = e’, 8 = u (t) et, 

dufdt = Pt P = Y - US u= lfx andy= z-l- 1itreducestothefor-m 

dz 

dr= c z(z+ 1)(z+2)+ ~(z+l)%+22] x (1.7) 

with singular point (0.0). Retaining in (L 7) the linear terms, we obtain the equation 

dw 
d3C== ~x-(~+](-~x)” (1.8) 

The integral curves of Es. (1.8) are of the form w = Csa f (y i- 1) (y - i)-‘x 
and the singular point is a node. The two exceptional directions in the wx-plane are 
determined by the relationships tg ‘pl = 00, tg qs = (y f i) (y - 1)-l. 

It follows from the qualitative theory of differential equations [12] that segment 
8 (6) : (1 Q, - f& 1 < if> is parabolic (all trajectories observed in a reasonably small 
neighborhood of the singular point enter the latter with one of their ends and reach the 
region boundary with the other). From Len’s theorem we obtain the uniqueness of the 
discernibility problem and, consequently, the hind of singular point is determined by 
the linear part of expansions; hence the considered point is in fact a node. 
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The solution of Eq. (1.5) with initial conditions (1.6) is derived as a formal series 
(80 is taken from f2]) 

0W-i f%(r), ei (r) - 0 (N), 
i=a 

eo= +-+r+*P (1.91 
+r 

Let us describe the algorithm of successive steps in the determination of functions 
a1 (r). First, we represent 0 (r) in the form 

0 (r) = % (r) -I- o (eI) = a0 (r) + e, (r) + 0 (81) (1.10) 

a1 (r) - o (P) (e< - 0 (r), el” - 0 (1)) (1.11) 

The substitution of ( 1.10) into (1.5) yields for al (r) the nonlinear equation 

1.12) 

F1 09 = 
1/s (7 - 3) (eo’ + I + 0 (el’)P + 2 

11s (r - 1) (eo + sl + 0 (sl)) 
=+(l+ vr+o(r)) 

Retaining in Eq. (1.12) terms of order eI” and discarding those of order o (ax”), we 
obtain for (51 (r) the linear equation 

2 
aI* - T e,’ = 0 f 1) (I. + 4) 

2 r 

which after integration with allowance for (1.11) yields 

al (r) = fr + *)6(r + 4, Plnr + 
I: -kc- 

(7 + 1) (7 -f- 4) 
18 lrs 

where C is an arbitrary constant. 
The second step of this method yields 

In the n-th step the sought solution is of the form 

@(r)=~~+oten)=8.-1$s+oW=~~et~8n+o(~~ (1~1~) 
idl 

where e, (r) must satisfy condition 

e, (r) - o (P+l), (8,’ - 0 (r’), 12,” N 0 (P-l)) (1.14) 

Substituting (I. 13) into (I. 5) we obtain 

r--i (fL 4 en + o(G) {on’ + f (&k-x + G’ -+ o (e,‘)) 11 - 2 
(1.15) 

(6~ + 6’ + o (%‘))“I + 6’l-, + o @tin)}+ + [8it+ + q’ + 

0 (f&‘)l$ + 2 = 0 
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Estimates of aII terms of Eq. (1.15) yield the equation 

2 
% 

” P-i -- r e,‘= - 2 %-1 + e;_, (1 - e;,“_,> + &_I] - (1.16) 

q e:-r - 2 + 0 (En”). 

By definition the terms of Eq. (1.16) of order lower than P-l cancel out. The rejec- 
tion of terms of order o (a,,“) yields the n-th approximation equation 

Gl#--- +nLr” i$@)(l, C)ln’r (1.17) 

where k, = m for n = 2m - 1 or n = 2m; b,(l) G 0 and bitnj are constants 
that depend on y and C whose form can be determined with the use of recurrent for- 
mulas. In accordance with condition (1.14) the constants of integration are assumed to 
be identicaIIy zero, hence the integration of (1.17) yields 

(the structnre of dJn) (y, C) is similar to that of bit%) (y, C)). 
Thus the formal series 

w-&+ 5 unm (7, C) rm+an In “r 
n=O 

(1.18) 

rn=l 

b 01 = 19 aoa = l/p (y + I), $1 = l/a (y + 1) (y + 4)9 a03 = 

v,c - l/l* (y + 1) (Y + 4)) 

can be considered as corresponding to the solution 8 (r) d Eq. (1.5) with initial con- 
ditions (1.6). 

Note . It was shown in [13] that in the case of cylindrical symmetry with the self- 
similar variable vzrs + xaa/t in the region of weak discontinuity - E - Co = 
2aov f COmt ti (v (r, t) = v,, E = r / t, Co is the speed of sound at v = 0, and 
a, is a positive constant), which is the zero term of the expansion of 8 (r). The descibed 
recurrent procedure makes it possible to construct the complete expansion. 

2, In the case of an asymmetric hodograph (0 = 8 (r, cp)) the solution of Eq.( 1.1) 
with initial conditions (1.4) is sought by analogy with (1.18) in the form 

Ok7 (Pb=&+ r, unm Pi9 r m+an ln nr 

n==o 

(2.1) 

To determine the unknown coefficients e,,,,, ((p) we substitute (2.1) into (1.1) and 
equate to zero the coefficients at terms of the form ld In qr . 

Let us describe the procedure of successive determination of CZ,,,,, (9). For this we 
write the explicit formula for the coefficients T,, at p lnqr in Eq. (1.1) into which 
we substitute (2.1). We obtain 
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(2.2) 

nl + h (h’ - 1) - 2 (%4 + 

brn4 + n4)1n2 + [%4 f #28 + @2-tn8)ln8 + 

,=xJ 

G&a 

p2snIa + MxF2qAa284nl} Pl[P2~8~4+ (2(nl-2n8) + 

&+8 
3 

@l-2%))&+ P&l- %&Pk 
) 
n4 + 

h (PC - 1) - 2(&18+4PU)+n8)i~II,+(~2+4P,+N2)~4- 

Mz;, ,*A l~*jPk)n4+nl[-21a8+(~l--I)(nl--1)1n4+ 
-- 

&?+a i;jzT 

IL&- 2 &28n4+ 2 [+P&l- 1) + 
ius=+2q--6 
S-q+3 

-I 

+ %!I + 2) aq+waq-a 
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For the first coefficients from (2.2) we obtain 

T-10 = (a01” + UoJ (1 - uf)ly = 0 (2.3) 

by virtue of initial conditions (1.4) &is = 1 and the equality (2.3) is automatic- 

ally satisfied. From conditions To,, = 0 and T,, = 0 we similarly obtain aoa = 

l/d (y -i- i) and all = 1 (cp), where I (cp) is an arbitrary function. We define coef- 
ficients Grn in the form of matrix 

a00 

a01 

a09 

a03 a11 

&‘a = a04 a12 

. . . . . . . . . . . . . 

%I zk-1 al 2k-3 . . . ak-11 

%ak a, Sk-2 . . . ak-12 

. . . . . . . . . . . . . 

where empty spaces represent zero elements. 

Elements of matrix A, are successively determined from top to bottom and from 

left to right. We will show that by equating to zero all T.,,, it is possible to determine 

consecutively all Gm. The position of coefficients u,,,~, in (2.2), for which n, = 

max m (for fixed s and 4 ) and n, = min n (for fixed s, q and m, ). is deter- 

mined by the quantity MR -I- 2Nk -I- 1. For it, M k + 2N k + 1 < s + 2. The 
equality corresponds exactly to an, ml. 

Having determined 2k rows in A, , we obtain the (2k + 1) -st and the(%k -I- 2)- 

nd rows with the use of the recurrent formulas 
(2.4) 

&R-is = (2k + 1) (2k - 2) Uq‘Jk-aq+l - fqf.k-2q+1 @OO, * * * t %,zk+q,+l) = o 

T Bkq = (2k - I> (2k + 2, uq2k-2qt2 - fqzk-2qta (~OO, . * . , aq,!4k-2qe+2) = 0 

(k > Q* > !7 > 0) 

Hence for k # 1 the use of (2.4) makes possible the recurrent determination of 
a,,,,, (n = k, k - 1, . . ., 0; m = 1, 3, . . ., 2k -I- 1 and m = 2, 4, . . . 9 
2k + 2). 

The case of k = 1 relates to constant arbitrariness of the determination of fij be- 
ginning with oos for the symmetric hodograph ((3 = 8 (r)) and to a single-functional 

arbitrariness comme&ihg with ~11 in the case of the asymmetric hodograph. In this 

manner the concept of 0 (r, cp) is established. 
The described algorithm makes it possible to determine with the use of expansions 

(1.18) and (2.1) the form of solution for the velocity potential ( 1. ‘2). For b> (r, 9) 
of the form 

@ (r9 Cp) - bolr + i bnm (cp) rm+2n In “r 
n=SI 
??I=2 

the coefficients b,, are determined by the related recurrent formulas 

(2k + 1) (= + 2) b,,k-2qtz = q@k-fZ.q+2 (~oI, . . -7 bq.Bk-aq.t2* 

aoo, . . .I %.2 k%q.+l ) 
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(2h + 2) (B + 3) b,k-aq+s = %9k*q+a v-hm * * -9 ~**IR-a**ts~ 
aoo, - 8 *, %, k-w.+d 

(k a (I* > q > 0, k = 0, 1, 2, . . .A 

where bol = II (rp) is an arbitrary function. 
The formu~~on of solutions of Eqs. (1.1) and (1.2) for double waves is thus comple- 

ted. The arbitrariness of this formulation is due to two functions 2 (cp)and 2, (cp) of 
one argument. With the use of I, (cp) it is possible to specify the shape of a weak dis- 
continuity for any instant of time t I= to , while 2 (9) is determined by the specific 
physical conditions of the problem. Convergence of the derived series has not been so 
far established. 

Fig. 1 

8, Numerical computations were carried cut for the ordinary differential equation 
( 1.5) with boundary conditions [lo] 

D %I) 
r=r+i* Wr)=r,_t , Q,(r)=* 

(D is the velocity of the detonation wave front) up to r = 0, 
These boundary conditions correspond to the C~p~n-J~~et conditions at the front 

of a cylindrical detonation wave initiated at instant t = 0 along an infinite axis. Func- 
tion 8 (r) corresponds to the distribution of the speed of sound behind the wave in terms 
of the velocity of products of explosion. The value 8 (0) corresponds to the propagation 
velocity of a weak discontinuity that separates the region of motion from that of qui- 
escent products of explosion. 

Curves of O1 tP, Wlln r (y = 3, D =4) are shown in Fig. 1. It will be seen from 
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these that in some region r = 0 (C,, C, and K are constants) the values 6 -1+ r, 
8” - Cl + C, In r and 1 9” /In r 1 < K are valid for 6, 9’ and 9”/ln r . Thus nume- 
rical computations confirm the presence of the term 9 In r in the expansion of iimc- 
tion 8 (r). 
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